

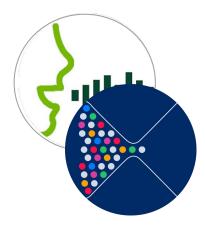
Artificial Intelligence to Accelerate Language Documentation

Rolando Coto Solano. Dartmouth College CLASP Research Seminar Series, University of Gothenburg. March 2023

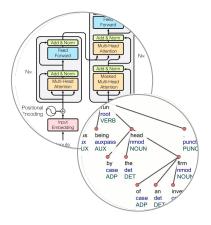
Meitaki! Wë'ste! Thank you! ¡Gracias!

Cook Islands Team

Sally Akevai Nicholas Jean Tekura Mason Teachers USP@Raro Teachers Ma'uke School Tyler Peterson Piripi Wills Liam Koka'ua Emma Ngakuravaru Powell


Samiha Datta (ASR) Victoria Quint (Keyboards) Jessica Cheng (OCR) Syed Tanveer (ASR) Sarah Karnes (Parsing) Ryan Dudak (Alignment) Caroline Conway (Morphology) Hermilla Fentaw (Morphology)

Chibchan Team


Sofía Flores Isaac Feldman (NMT) Veronica Quidore (Parsing) Annie Tang (Keyboards) Catharine Herrera (Morphology) Mien Nguyen (Morphology)

Sharid Loáiciga (Parsing) Guillermo González Tai Wan Kim (ASR) Freddy Obando Franklin Morales Alex Jones (NMT)

Parts of the talk

NLP, language documentation and revitalization The Bribri and Cook Islands Māori languages and people Algorithms for NLP and Indigenous Languages

The future: What are we doing this for?

NLP and Language Documentation

Some of our most common tasks involve tasks that are repetitive, but that require very high levels of expertise.

Automy component Human peripheral blood platelet wore used Cline MCF-7 cells were were tree to blood platelet wore used were tree to blood platelet wore to blood platele

Annotation of

corpora

Turning these into learning materials

LangDocumentation: Transcription



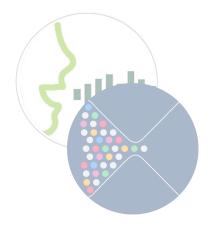
You need 50 hrs of work to transcribe one hour of audio (Shi et al. 2021) This bottleneck slows down all other analyses. The technology is far from perfect for English, but it does exist.

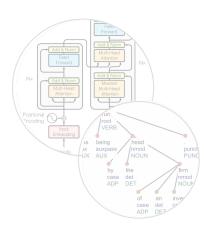
LangDocumentation: Analysis



Tagging corpora (e.g. forced alignment, taggers and parsers)

Translating corpora (translation exists for English)


LangDocumentation: Tools for Revitalization



Children's books, dictionaries, public corpora

Tools (e.g. dictionaries, apps)

NLP, language documentation and revitalization The Bribri and Cook Islands Māori languages and people Algorithms for NLP and Indigenous Languages The future: What are we doing this for?

Bribri

The Bribri language has 7K speakers in Costa Rica. It is vulnerable.

Bribri Grammar

SOV, Ergative

Inflectional morphology

Complex demonstratives

Numerical classifiers

Ye' to ù s<u>ú</u> I ERG house see-PST.PERF I saw the house.

Ye' tö ù s<u>awé</u> I ERG house see-PST.IPFV I would see the house.

dù e'that birddù aíthat bird [up there, nearby]dù diàthat bird [down there, far away]dù se'that bird [that you can hear]

dù bồ**tk** two-(flat) birds aláköl bố**l** two-(human) women

Bribri Data Sources

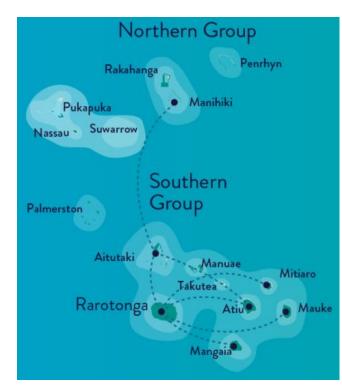
Oral Corpus Sofía Flores: bribri.net (~68 minutes of transcribed audio)

Existing publications (from Costa Rican universities) Total: ~90K words

SE' DOR STE

IES SA' YILITE

HISTORIAS BRIBRIS


Ditsố rukuố

Se' ttő

bribri ie

Cook Islands Māori

13K speakers +8K in NZ and AUS

Endangered in Rarotonga

Vulnerable in the other islands

Relatively few phonemes

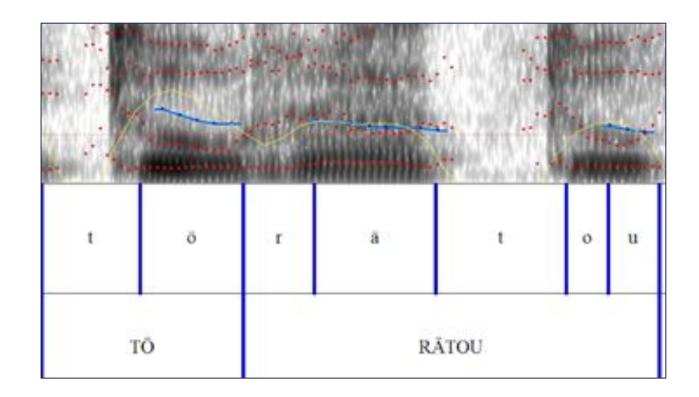
5 vowels: a e i o u 9 consonants: k m n ŋ p r t v ?

Isolating morphology

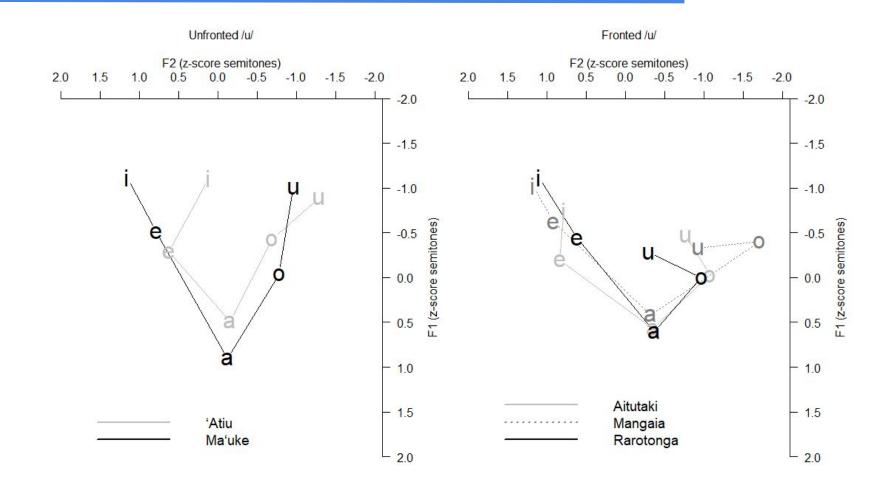
Kua tunu au i te taro PRF plant I ACC the taro I planted the taro.

Kua 'akaruke atu te au kurī PRF leave away the PL dog *The dogs have left*.

Data Source: Te Vairanga Tuatua



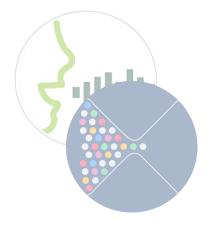
Large (dozens of hours) Linguistically rich Little annotation Transcription is a major bottleneck ~4 transcribed hrs



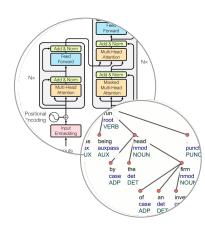
Forced Alignment

Untrained forced alignment (8% of error when finding the center of the word)

Forced Alignment and Vowels



Forced Alignment and Vowels



"I am proud and excited of how complex and sophisticated our language is. They always told me our language was simple and not as good as English, and I can see that that's not true"

Teacher Tereapii Upokokeu from 'Atiu, singing the "Glottal Stop Song". USP, January 2019 <u>>></u> (Creating a virtuous circle in NLP work).

NLP, language documentation and revitalization The Bribri and Cook Islands Māori languages and people Algorithms for NLP and Indigenous Languages The future: What are we doing this for? There are fewer data to train systems.

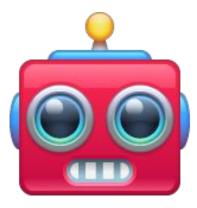
Data are much more difficult (and expensive!!!) to generate

There is orthographic divergence.

We find complex sociolinguistic environments (e.g. *code-switching*).

English is not very morphologically rich. Languages with rich morphology have many more unique words, and therefore their corpora are more sparse.

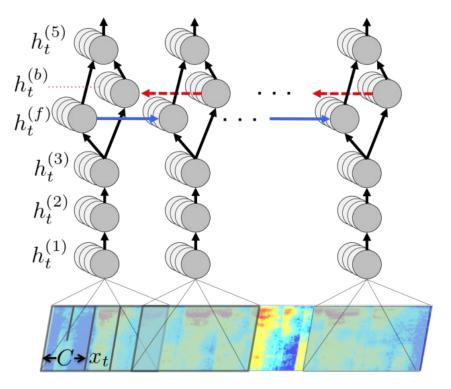
NLP for Indigenous Languages



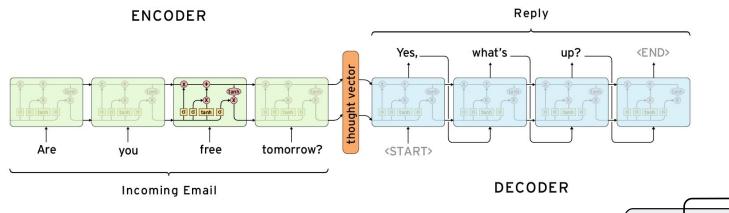
Speech Recognition Machine Translation Parsing

Predictive keyboards

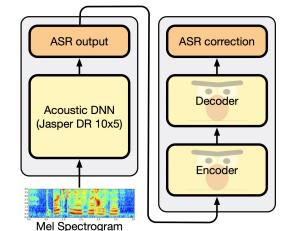
Speech Recognition



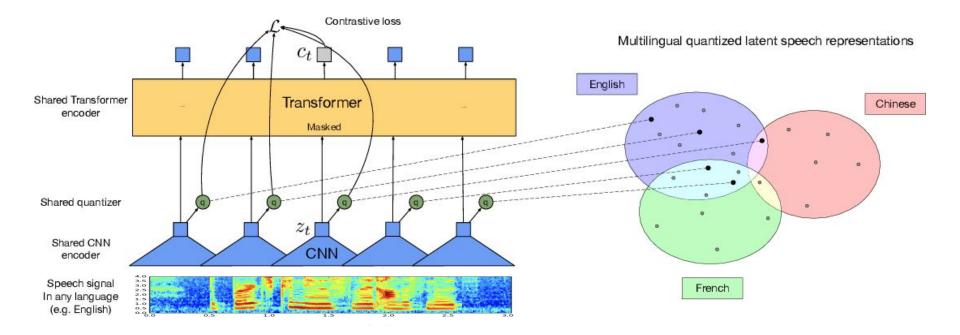
Transcription Bottleneck: You need 50 hrs of work to transcribe one hour of audio (Shi et al. 2021)


In the last 5 years there have been significant advances in NLP. This can help our documentation work.

Speech Recognition: Algorithms


Algorithms based on deep learning (e.g. DeepSpeech) try to classify sections of an audio recording and transform them into characters.

Speech Recognition: Algorithms



Contemporary Algorithms (e.g. Transformers): The input is codified into an intermediate representation. It is then transformed into an output.

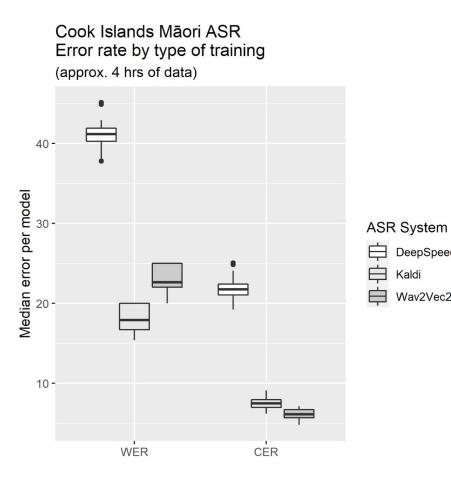
Speech Recognition: Algorithms

Multilingual components (e.g. Wav2Vec2): The algorithm is pretrained with knowledge from other languages.

Speech Recognition: Data

237 minutes (~4 hrs), 5033 files
36K total words, 2362 unique words
10 speakers (30-75 years old)
4 islands (Rarotonga, Tongareva, Ma'uke, 'Atiu)

* *						
I	00:01:04.000	00:01:05.000	00:01:06.000	00:01:07.000	00:01:08.000	00:01:09.000
default						
Speaker 1 Māori Tr [136]	Kua tuku tā rātou k	upenga,	ē kia pōpōiri ak	e, kua mou tā rāto	u ika	


Speaker 1 Māori Transcription	Ana Andrew	29.126	31.067	1.941	I runga i te 'enua ko Tupuaki,
Speaker 1 Māori Transcription					i te tuātau ta'ito,
Speaker 1 Māori Transcription	Ana Andrew	33.202	37.468	4.266	tē no'o ra tēta'i māpū māro'iro'i, ko Rū tōna ingoa.
Speaker 1 Māori Transcription	Ana Andrew	38.356	39.477	1.121	Kāre ia i te ariki,
Speaker 1 Māori Transcription	Ana Andrew	39.932	42.371	2.439	ē kāre katoa aia i te tamaiti nā te ariki,
Speaker 1 Māori Transcription	Ana Andrew	42.617	43.383	0.766	inārā,

Speech Recognition: CIM Results

DeepSpeech

Wav2Vec2

Kaldi

	WER	CER
Kaldi	$\textbf{17.9} \pm \textbf{1.7}$	7.5 ± 0.8
DeepSpeech	41.1 ± 2.0	21.9 ± 1.6
Wav2Vec2	22.9 ± 2.0	$\textbf{6.1} \pm \textbf{0.6}$

Speech Recognition: CIM Results

English	One day I was just sitting in my car		
Target	i tēta'i rā tē no'o 'ua ara au i roto i tōku motoka	WER	CER
Kaldi	ki tēta'i rā tē no'o 'ua ara 'oki i roto i tōku motoka	15	9
DeepSpeech	i tēta'i a te no'o ara i roto i tōku motoka	31	18
Wav2Vec2	i tēta'i rā tē no'o 'ua ara au i roto i tōku moutakā	8	5
English	I was sure that it was the pig who had rooted (it up)		
Target	kua kite ra 'oki au ē nā te puaka i ketu	WER	CER
Kaldi	kua kite rā 'oki au e nā te puaka i ketu	18	5
DeepSpeech	kite rāi koe i nā te puaka i ki	55	38
Wav2Vec2	kua kite rā 'aki au ē nā te puaka i kit	27	10
English	Absolutely, it will get mixed up		
Target	āe 'oki ka iroiro atu	WER	CER
Kaldi	'aere ka'iro i roa atu	80	50
DeepSpeech	āe ki ka'iro 'oki roa te	100	50
Wav2Vec2	āe 'oki kā'iro'i roa atu	40	23

Speech Recognition: Bribri Results

English	So, you were young anyways, right? (CER 6, WER 43)
Original	e' t <u>a</u> be' bák <u>ia</u> tsítsir wake'
Wav2Vec2	e't <u>a</u> be' bák <u>ia</u> tsítsi wake'
English	So he left the place where his house was (CER 22, WER 67)
Original	<u>e</u> 'rö ie' r ề ù ttố <u>a</u> m <u>éa</u> t
Wav2Vec2	e'rö ie' <mark>rế</mark> ù jtö <u>a</u> m <u>éa</u> t
English	Well, you should start telling me why (CER 65, WER 100)
Original	m <u>a</u> íkën <u>e</u> apàkốm <u>i</u> n <u>e</u> tö ì k <u>ué</u> k <u>i</u>
Wav2Vec2	m <u>i</u> ke n <u>a</u> i apàkom <u>ie</u> të

28 speakers68 minutesCER:23±2WER:65±3

Speech Recognition: Cabécar Results

English	Only Kál Kébla brought his log of wood, Jak Kébla brough his stone, the suita stone (CER: 7)
Original	jíbä kal kébla né wa ijé kalí dëká ják kébla né wa jí jákí ju kä dëlëká rä
Wav2Vec2	<mark>s</mark> ibä kal kébla né wa ijé kalí dëká ják kébla né y a jí ják <mark>i</mark> ju kä r ëlëká rä
English	So when he saw it, he turned his face and went to see her; she had the girl in her arms (CER: 12)
Original	jéra ijé te i suáni ra ijé te jé suá ijé wä <mark>t</mark> káwa tkáu ijé sua ijé wa yaba ka yaba kala
Wav2Vec2	jéra ijé te i suáni ra ijé te jé suá ijé wäkáwa <mark>ká</mark> ijé jé su <mark>á jé</mark> ijé wa yaba k <mark>á</mark> yaba kala
English	They were exterminated, they said It was not their fault, they were exterminated. (CER: 31)
Original	ijéwá wấélế ká jíyế kúna ijéwá <mark>te</mark> i shế rä wấélế
Wav2Vec2	ijé wa wấél <mark>ä</mark> ká i yë kúna ijéwá dishärí wấérä

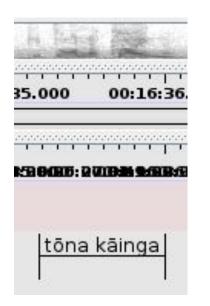
12 speakers53 minutesCER:22WER:53

Speech Recognition: Held-Out Speakers

	WER	CER	Test	% total	% total
Splits (#files and %)			speaker(s)	files	time
4036 - 504 - 493	32.9 ± 0.9	8.4 ± 0.2	A	3.7	3.4
80% - 10% - 10%			K	3.6	4.5
			T2	2	4.5
			R	0.5	1.0
4007 - 500 - 526	40.1 ± 1.9	11.0 ± 0.5	T3	6.9	7.6
80% - 10% - 10%			M2	3.4	7.2
3849 - 481 - 703	64.5 ± 3.1	24.5 ± 1.0	M1	14.0	8.0
76% - 10% - 14%					
3769 - 419 - 845	25.0 ± 0.0	5.9 ± 0.3	В	17.0	18.5
75% - 8% - 17%					
3268 - 408 - 1357	50.0 ± 0.0	16.4 ± 0.5	J	27	30
65% - 8% - 27%					
3532 - 392 - 1109	65.9 ± 1.9	23.0 ± 0.2	T1	22	15
70% - 8% - 22%			7		
	46.4 ± 15.6	14.9 ± 7.2			
	$\begin{array}{r} 4036 - 504 - 493 \\ 80\% - 10\% - 10\% \\ \hline \\ 4007 - 500 - 526 \\ 80\% - 10\% - 10\% \\ \hline \\ 3849 - 481 - 703 \\ 76\% - 10\% - 14\% \\ \hline \\ 3769 - 419 - 845 \\ 75\% - 8\% - 17\% \\ \hline \\ 3268 - 408 - 1357 \\ \hline \\ 65\% - 8\% - 27\% \\ \hline \\ 3532 - 392 - 1109 \\ \end{array}$	$4036 - 504 - 493$ $80\% - 10\% - 10\%$ 32.9 ± 0.9 $4007 - 500 - 526$ $80\% - 10\% - 10\%$ 40.1 ± 1.9 $80\% - 10\% - 10\%$ 40.1 ± 1.9 $3849 - 481 - 703$ $76\% - 10\% - 14\%$ 64.5 ± 3.1 $76\% - 10\% - 14\%$ 25.0 ± 0.0 $3769 - 419 - 845$ $75\% - 8\% - 17\%$ 25.0 ± 0.0 $3268 - 408 - 1357$ $65\% - 8\% - 27\%$ 50.0 ± 0.0 $3532 - 392 - 1109$ $70\% - 8\% - 22\%$ 65.9 ± 1.9	$4036 - 504 - 493$ $80\% - 10\% - 10\%$ 32.9 ± 0.9 8.4 ± 0.2 $4007 - 500 - 526$ $80\% - 10\% - 10\%$ 40.1 ± 1.9 11.0 ± 0.5 $80\% - 10\% - 10\%$ 40.1 ± 1.9 11.0 ± 0.5 $3849 - 481 - 703$ $76\% - 10\% - 14\%$ 64.5 ± 3.1 24.5 ± 1.0 $3769 - 419 - 845$ $75\% - 8\% - 17\%$ 25.0 ± 0.0 5.9 ± 0.3 $3268 - 408 - 1357$ $65\% - 8\% - 27\%$ 50.0 ± 0.0 16.4 ± 0.5 $3532 - 392 - 1109$ $70\% - 8\% - 22\%$ 65.9 ± 1.9 23.0 ± 0.2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Speech Recognition: Held-Out Speakers

Ð


Partition 5

Meaning:From morning till night.Target:mei te pōpongi mai e pōInference:mei te pupongi mai ēpo(CER=16, WER=50)

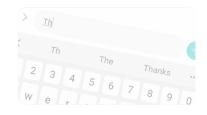
Partition 1

Meaning: When we die we die, when we live we live.
Target: mē mate tātou kua mate mē ora kua ora
Inference: mē mati tātou kua mate me ora kua ra (CER=8, WER=33)

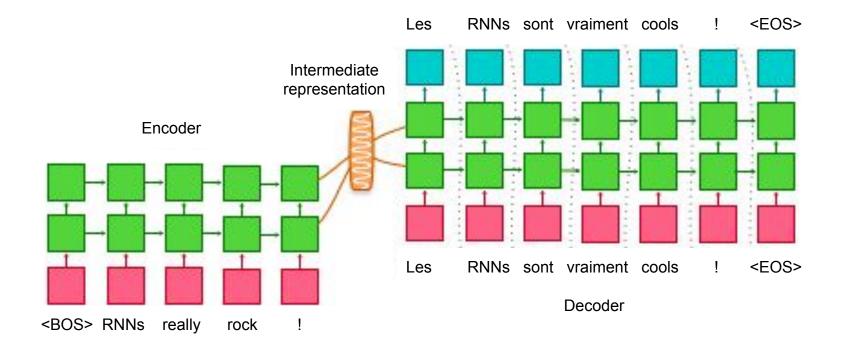
Speech Recognition: Future Work

Ye' tề tu <u>ề</u>	Mìka ye' bák tsítsi ta
Historia de vida de Bruna Figueroa	Historia de vida de Juana Sánchez
Bruna Figueroa Ortiz	Juana Sánchez
Siglas: BF	Siglas: JS
Ocupación: agricultora	Ocupación: protectora de iguanas
Edad: 55	Edad: 61
Dialecto: Salitre	Dialecto: Amubri
Género: Historia de vida	Género: Historia de vida
Lugar: Pueblo Nuevo de Cabagra	Lugar: Patiño-Kë'köldi
Fecha: 18 de julio del 2014	Fecha: 6 de septiembre del 2012
Palabras: 114	Palabras: 61

We have a working prototype of an ASR transcription system for CIM.


For Bribri and Cabécar we need to transcribe more recordings.

NLP for Indigenous Languages



Speech Recognition Machine Translation Parsing

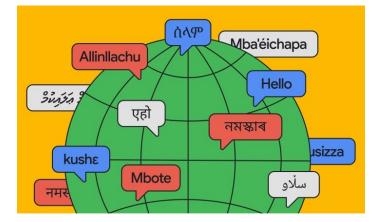
Predictive keyboards

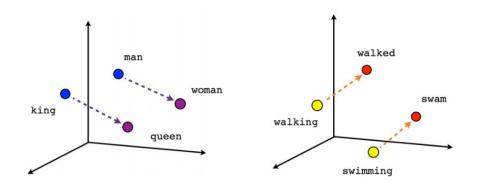
Machine Translation

OpenNMT: Transformer with RNNs (recurrent neural networks)

10K Bribri-Spanish sentence pairs (~90K words)

Machine Translation: Data Variation


	Differences			
Writing system	<u>ù</u> 'cooking pot' (Constenla et al., 2004)			
Writing system	ằ (Jara Murillo, 2018a), ù (Margery, 2005)			
	ù 'cooking pot':			
Dispritio anading	comb. grave (U+0300) comb. low line (U+0332)			
Diacritic encoding	comb. grave (U+0300) comb. minus sign below (U+0320)			
	latin small u with grave (U+00F9) comb. macron (U+0331)			
Phonetics and	Nasal assimilation: amì $\sim \underline{a}$ mì 'mother'			
phonology	Unstressed vowel deletion: $m\tilde{i} \sim \tilde{a}m\tilde{i}$ 'mother'			
Sociolinguistic and	ñalà (Amubri) 'road' (Constenla et al., 2004)			
dialectal variation	ñolồ (Coroma) 'road' (Jara Murillo, 2018a)			
	(a) ìë'pa rör këképa táìn ë. (MEP, 2017, 18)			
Orthographic acceletion	ie'pa dör akékepa taîe. (Equivalent in Constenla et al. (2004))			
	'They are important elders'.			
Orthographic variation	(b) E'kũếk és ikíe dör (García Segura, 2016, 11)			
	E' kuéki e's i kie dör. (Equivalent in Constenla et al. (2004))			
	'That's why it is called like this'.			


Machine Translation: Data Variation

	Differences					
Writing system	<u>ù</u> 'cooking pot' (Constenla et al., 2004)					
	ữ (Jara Murillo, 2018a), ừ (Margery, 2005)					
	ù 'cooking pot':					
Discritic anading	comb. grave (U+0300) comb. low line (U+0332)					
Diacritic encoding	comb. grave (U+0300) comb. minus sign below (U+0320)					
	latin small u with grave (U+00F9) comb. macron (U+0331)					
Phonetics and	Nasal assimilation: amì $\sim \underline{a}$ mì 'mother'					
phonology	Unstressed vowel deletion: $\dot{mi} \sim \tilde{a}mi$ 'mother'					
Sociolinguistic and	ñ <u>alà</u> (Amubri) 'road' (Constenla et al., 2004)					
dialectal variation	ñolồ (Coroma) 'road' (Jara Murillo, 2018a)					
	(a) ìë'pa rör këképa táìn ë. (MEP, 2017, 18)					
Orthographic regulation	ie'pa dör akékepa taîe. (Equivalent in Constenla et al. (2004))					
	'They are important elders'.					
Orthographic variation	(b) E'kũếk és ikíe dör (García Segura, 20 ãmì x { <u>a</u> m <u>ì</u>					
	E' k <u>ué</u> k <u>i</u> e's i kie dör. (Equivalent in \mathbf{c}					
	'That's why it is called like this'.					

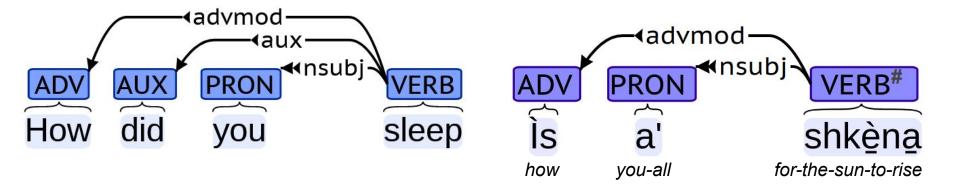
English	Bribri reference	Bribri translation	Observations
1. The bird is (sitting) on the branch.	Dù tkër kàlula k <u>i</u> .	Dù tkër kàlula k <u>i</u> .	Correct positional: <i>tkër</i> : to be sitting.
2. The dog is (lying down) by the edge of the river.	Chìchi tër di' jkö .	Chìchi tër ñ <u>alà</u> jkö .	Correct positional: <i>tër</i> : to be lying down. Translation means: 'The dog is (lying down) by the edge of the road'.
3. The shirt is (hanging) over there.	Apàio a'r <u>a</u> w <u>íe</u> ye' w <u>a</u> .	<u>A</u> @@wì <u>e</u> apàio tër .	Wrong positional: <i>a'r</i> : hang; <i>tër</i> : lying down
4. He was (standing) in the house.	Ie' bák dur ù <u>a</u> .	Ie' bák ù <u>a</u> .	Missing positional: <i>dur</i> : to be standing. Translation means: 'He was in/by the house'

Machine Translation: Future Work

We haven't started this process in CIM.

We are testing unsupervised methods to improve Bribri and test Cabécar translation.

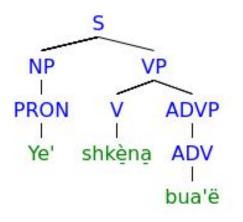
NLP for Indigenous Languages



Speech Recognition Machine Translation Parsing

Predictive keyboards

Automated syntactic analysis, or **parsing**, is used to create corpora and study the morphosyntax of a language.

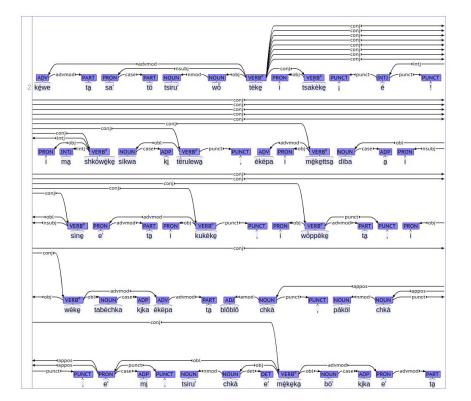

This task includes **Part-of-Speech Tagging**.

Parsing: Corpus

First step: Create a corpus of parsed structures, a **Treebank**.

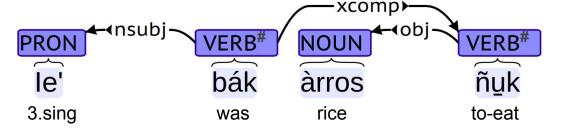
(1) Assign POS and parse as constituent tree (CFG)

(2) Convert CFG trees into a **dependency** structure.


Parsing: Corpus

Corpus created with CFG rules: 1570 words, 315 sentences.

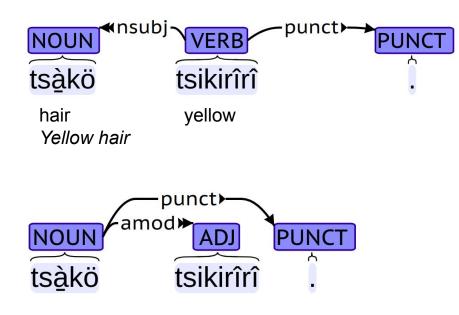
K<u>é</u>we t<u>a</u> sa' tö tsiru' wồ tèk<u>e</u> i tsakèk<u>e</u> ¡é! i m<u>a</u> shkốw<u>è</u>k<u>e</u> síkwa k<u>i</u> tếrulew<u>a</u>, ékëpa i m<u>è</u>k<u>e</u>tts<u>a</u> dìba <u>a</u> i sìn<u>e</u> e' t<u>a</u> i kukèk<u>e</u>, i wồppèk<u>e</u> t<u>a</u>, i wèk<u>e</u> tabèchka k<u>i</u>ka ékëpa t<u>a</u> blôblô chkà, páköl chkà, e' m<u>i</u>, tsiru' chkà e' m<u>è</u>k<u>e</u>k<u>a</u> bö' k<u>i</u>ka e' t<u>a</u>


First we cut the cocoa fruit, we split it, right? And we ferment it. You cut it over leaves, put it there and it dries in the sun. Then we toast it, we air it, and then we grind it in this machine. Then [you take] the sweet thing, the sugar, mix it with the cocoa and put it in the fire.

(B09h22m53s05sep2012-01)

With the existing data we trained an automated parsing model (based on a multilingual BERT and UDPipe2).

UAS: 100% LAS: 100% UPOS: 100%



She was eating rice.

UAS: Unlabelled attachment score LAS: Labelled attachment score With the existing data we trained an automated parsing model (based on a multilingual BERT and UDPipe2).

UAS: 0% LAS: 0% UPOS: 66%

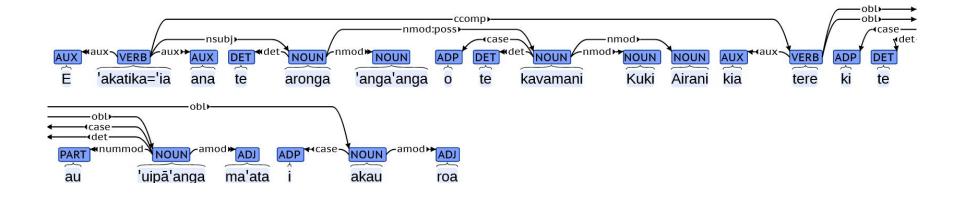
UAS: Unlabelled attachment score LAS: Labelled attachment score

With the existing data we trained an automated parsing model (based on a multilingual BERT and UDPipe2).

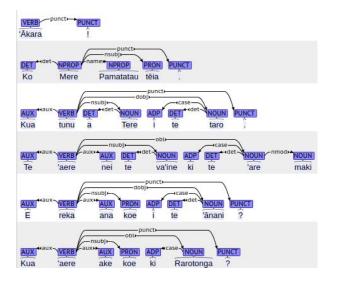

 Preliminary results:

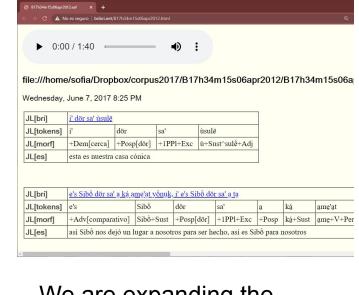
 UAS
 85% ± 7%

 LAS
 81% ± 7%


 UPOS
 90% ± 3%

We have begun the CIM parsing process (1035 words, 126 sentences). The tagger is about 92% accurate.


Parsing: Cook Islands Māori


Corpus so far: 126 sentences, 1035 words

E 'akatika'ia ana te aronga 'anga'anga o te kavamani Kuki Airani kia tere ki te au 'uipā'anga ma'ata i akau roa. The Cook Islands public servants are permitted to travel to meetings overseas. (Nicholas 2017:366, example 536b)

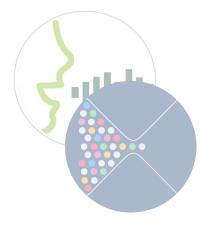
Parsing: Future Work

We hope to release the CIM treebank in the next 6~9 months.

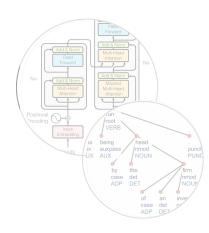
We are expanding the Bribri treebank to tag the oral corpus.

NLP for Indigenous Languages

Speech Recognition Machine Translation Parsing


Predictive keyboards

Deploying Predictive Keyboards


k	á	t	е		а			
006b	00e1	0074	0065	0020	0061			
kát	e a							
	···		1	ماذ	1-15		ómi	
	"a"			alá	klä	1	<u>ámi</u>	

Keyman keyboards have been the necessary tool to deploy them.

NLP, language documentation and revitalization The Bribri and Cook Islands Māori languages and people Algorithms for NLP and Indigenous Languages The future: What are we doing this for?

Technology and Revitalization

A computer that knows the language will **NOT** revitalize the language.

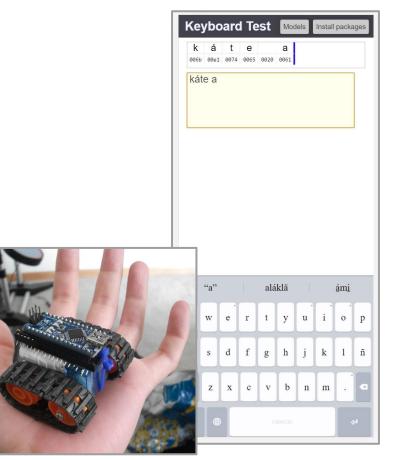
Technology and Revitalization

Incorporating Indigenous languages into technology creates positive impact, particularly а amongst younger generations.

6pago?

It helps create new usage domains and new communities.

"Use your Voice" Zapotec project (Lillehaugen 2016)


Indigenous Communities and NLP

Useful tools: Predictive keyboards Future tools: ASR Robots

On the Cook Islands, the CS people are working for the community.

In Costa Rica we are still facing this challenge: How can we transfer ownership of these projects to the community?

Example: Data Sovereignty

Meitaki! Wë'ste! Thank you! ¡Gracias!

(rolando.a.coto.solano@dartmouth.edu)